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Set-Up ATE/Policy Estimation with Q-functions

Key Notes

From “Markovian Interference in Experiments” (Farias2022):

Estimating potential-outcomes/causal inference estimands via solving
off-policy evaluation problems

Cramer-Rao Lower Bound on variance of unbiased, off-policy
evaluation estimators

Construct a MDP-motivated Taylor Expansion of ATE
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Causal Set-Up

Goal: Estimate ATE = E[Y (1)− Y (0)]

In “statistical language”, we observe (Y ,A,X ) ∼ P
Say A,Y ∈ {0, 1},X ∈ Rd

Some assignment mechanism A ∼ p(·|X ), or randomization rule
A ∼ Ber(p) ⊥⊥ X

Treatment assignment static Ai or temporal/dynamic/sequential Ait
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Casting Treatment as an MDP

Consider spaces of states s ∈ S , actions a ∈ A under policies π ∈ Π,
and rewards r(st , at) or losses ℓ(st , at) over time t ∈ [T ]

Goal: Infer about an optimal policy π∗ (via ATE)

Figure: Figure 1 from Shi 2022
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RL; V- and Q-Functions

Transition matrix Pπ with stationary distribution ρπ

Policy π : S 7→ A

Control π0(s) = 0 and treatment π1(s) = 1

Rπ = limt→∞
1
T

∑
t∈[T ] r(st , π(st))

State-average Reward under policy π

Vπ(s) := E[
∑∞

t=0 r(st , at)− λπ|s0 = s]

Qπ(s, a) := E[
∑∞

t=0 r(st , at)− λπ|s0 = s, a0 = a]
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Typical Causal Assumptions

Back to our “statistical” framework:
Under a set of “standard” (untestable) assumptions, we have tools for
efficient, DR estimation (double-ML/AIPW, TMLE, etc.)

{Y (0),Y (1)} ⊥⊥ A|X - “Ignorability/Unconfoundedness”

p(A|X ) ∈ [φ, 1− φ] - “Overlap/Positivity”

Yi = Yi (Ai ) = AiYi (1) + (1− Ai )Yi (0) - Consistency &
“SUTVA”/“Non-interference”
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“Markovian Interference” (Randomization with Interference)

Motivation

“Markovian Interference in Experiments”

“Treatment corresponds to an action which may interfere with state
transitions. This form of interference, which we refer to as Markovian”

Figure: Fig. 1 from Farias 2022
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“Markovian Interference” (Randomization with Interference)

Set-Up

Goal: Estimate ATE = Rπ1 − Rπ0 = ρT1 r1 − ρT0 r0
For stationary distrubions ρ and rewards r

We observe {(at , st , r(at , st))}t∈[T ] under π1/2, a simple
randomization policy

We have some treatment π1 policy that changes the transition
probability to λ(p + δ)

Goal is to infer effect of treatment π1 policy compared to control π0
Phrasing as an off-policy evaluation problem
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“Markovian Interference” (Randomization with Interference)

Why ˆATEDQ?

Figure: Table 1 - Farias 2022
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“Markovian Interference” (Randomization with Interference)

“Differences in Q’s Estimator”

ˆATEDQ :=
1

|T1|
∑
t∈T1

Q̂π1/2
(st , at)−

1

|T0|
∑
t∈T0

Q̂π1/2
(st , at)

Q̂π1/2
= min

V̂ ,λ̂

∑
s∈S

(∑
t,st=s

r (st , at)− λ̂+ V̂ (st+1)− V̂ (st)

)2
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“Markovian Interference” (Randomization with Interference)

“Differences in Q’s Estimator”

Theorem (Theorem 1 (Bias of DQ))

Assume that for any state s ∈ S, dTV(p(s, 1, ·), p(s, 0, ·)) ≤ δ. Then,∣∣∣ATE− Eρ1/2 [ATEDQ]
∣∣∣ ≤ C ′

(
1

1− λ

)2

rmax · δ2

where rmax := maxs,a |r(s, a)| and C ′ is a constant depending
(polynomially) on log(C ).
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“Markovian Interference” (Randomization with Interference)

“Differences in Q’s Estimator”

Theorem (Theorem 2 (Variance and Asymptotic Normality of DQ))

√
T
(
AT̂EDQ − Eρ1/2

[
AT̂EDQ

])
d−→ N

(
0, σ2

DQ

)
σDQ ≤ C ′

(
1

1− λ

)5/2

log

(
1

ρmin

)
rmax

where ρmin := mins∈S ρ1/2(s) and C ′ is a constant depending
(polynomially) on log(C ).
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“Markovian Interference” (Randomization with Interference)

Off-Policy Evaluation

Theorem (Theorem 3 from Farias 2022 (Variance Lower Bound for
Unbiased Estimators))

Assume we are given a dataset {(st , at , r (st , at)) : t = 0, . . . ,T} generated
under the experimentation policy π1/2, with s0 distributed according to
ρ1/2. Then for any unbiased estimator τ̂ of ATE, we have that

T · Var(τ̂) ≥

2
∑
s

ρ1(s)
2

ρ1/2(s)

∑
s′

p
(
s, 1, s ′

) (
Vπ1

(
s ′
)
− Vπ1(s) + r(s, 1)− λπ1

)2
+ 2

∑
s

ρ0(s)
2

ρ1/2(s)

∑
s′

p
(
s, 0, s ′

) (
Vπ0

(
s ′
)
− Vπ0(s) + r(s, 0)− λπ0

)2
≜ σ2

off
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“Markovian Interference” (Randomization with Interference)

Off-Policy Evaluation

Theorem (Theorem 4)

For any 0 < δ ≤ 1
5 , there exists a class of MDPs parameterized by n ∈ N,

where n is the number of states, such that
σDQ

σoff
= O( n

cn ), c > 1.

Furthermore, |(ATE− E ˆATEDQ)/ATE| ≤ δ
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“Markovian Interference” (Randomization with Interference)

ˆATEDQ as bias-correction

Observe Lemma 2 in Farias2022 (pg 14-5)
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“Markovian Interference” (Randomization with Interference)

Questions

Questions of Confusion

How does this estimator/model include/account for interference? µ
term (feedback/relapse mechanism) is not alone to account for some
interference

Simulations do so explicitly but nothing in the crafting of this estimator
seems

How general is Theorem 4, the comparison of σDQ/σoff (and
analytically, how does this e |S | term arrive?)

Questions of Opportunity

How does ˆATEDQ translate to (observed) policies without
randomization?

How does ˆATEDQ scale wrt the action space |A|?
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Compiling Resources

https://crl.causalai.net/

Junzhe Zhang - https://junzhez.com/

Jiang & Li (2016) - “Doubly Robust Off-policy Value Evaluation for
Reinforcement Learning”

https://arxiv.org/pdf/1511.03722.pdf
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