Dissertation Work Formulation

Dominic DiSanto; Tianxi Cai & Junwei Lu

Department of Biostatistics, Harvard University

September 6, 2024

Today's Goals/Questions

• Review (high-level) treatment patterns in our data

- Review the set-up and initial results of preliminary Hawkes modelling of RA-related PheCodes
 - Simple set-up: exponential kernel, binary treatment, cardiovascular phecodes

 Review what questions/materials to prepare for Kat/retreat on the 20th

(Simple) Set-Up

- Began by focusing on cardiovascular related PheCodes (4**.**)
 codes, grouped at the three digit level (e.g. 400, 401, etc.)
 - These constitute our p = 27 mutually exciting processes
- Limited to patients with
 - RA diagnosis from 2016-Present
 - TNF- α treatment
 - ullet No "other" treatment prior to TNF-lpha inhibitor initiation
- N=191 eligible patients, with P=364 distinct PheCodes
- When limiting to requiring cardiovascular codes, n=95 patients and p=27 PheCodes (after 3-digit truncation)
 - 72 (\sim 75% remained on TNF- α medications throughout their history, 23 (\sim 25% switched)

(Simple) Set-Up

- \bullet Assigned binary treatment, "TNF- α inhibitors only" compared to "any-time drug-switch"
 - "Drug-switch" is any post-TNF records of IL-6, COX, JAK, CTLA6, or Anti-CD20 related medications
 - Currently excluding patients who received non-TNF drugs prior to TNF start date
- Began observation period at TNF initiation date
 - i.e. Day 0 is earliest date of TNF receipt

Cohort/Treatment Summary Slide

Cohort/Treatment Summary Slide

(Simple) Estimation Set-Up

- Parameterize the Hawkes process with exponential decay kernel
 - $\lambda_i(t) = \mu_i + \sum_{j=1}^p \sum_{t_k < t} \alpha_{ij} \exp\{-\beta_{ij}(t t_k)\}$
- Estimate MLE's $\hat{\alpha}, \hat{\beta}$
 - Estimated separately by treatment group (with pre-switch observations contributing to the TNF-only model until treatment-switching observed
 - More accurately can write $\hat{lpha}^{(0)},\hat{eta}^{(0)}$ and $\hat{lpha}^{(1)},\hat{eta}^{(1)}$
- Compare the calculated intensity functions $\lambda^{(0)}(t;\alpha^{(0)},\beta^{(0)})$ and $\lambda^{(1)}(t;\alpha^{(1)},\beta^{(1)})$
 - The related research question is somewhat diffuse: "Is drug-switching effective?"

Example Conditional Intensity Comparison

Figure: Conditional intensity function of for a single patient's 427.** pheCodes

Blue line represents $\lambda^{(0)}$ intensity function estimated under drug switching. **Black** line the $\lambda^{(1)}$ under TNF- α inhibitors only.

Plotted for for an arbitrary patient, focusing on cardiac arrest codes (427.**)

Parameter Estimates

Parameter	Role	TNF-Only	Any-Drug Switch
μ_i	Baseline Intensity	0.957	0.002
$\alpha_{i,i}$	Event Excitation	3.533	2.437
$\beta_{i,i}$	Intensity Decay	1.542	1.252

Here i corresponds to the process representing PheCode 427.**, i.e. $\alpha_{i,i}$ is the self-excitation from other 427.** codes and $\beta_{i,i}$ the exponential decay parameter from other 427.** codes.

Summary/Questions

- Are other questions/estimands more relevant?
 - Optimal timing of drug-switching (related to assignment operator in LMTP's)
 - More of a policy-evaluation/learning question
 - Identifying related diseases with similar observed effects
 - Trying to build evidence of effectiveness by observing signal/differences among related pathologies
 - i.e. for disease i, examining $\beta_{i,j_c;j_d}$ for "clusters" or relevant cooccurring code $\beta_{j_c}, \dots, \beta_{j_d}$'s
- Other useful results to prepare and present for Kat?
 - Plot about PheCode/event frequency

Logistics: Committee

Drugs/Drug Classes Considered I

Other drugs included but only the following observed in our cohort:

- TNF Blockers:
 - adalimumab
 - certolizumab
 - etanercept
 - golimumab
 - infliximab
- IL-6 Inhibitors:
 - sarilumab
 - tocilizumab
- JAK Inhibitors:
 - tofacitinib
 - baricitinib
 - upadacitinib

Drugs/Drug Classes Considered II

• CTLA-4 Inhibitors:

- abatacept
- COX Inhibitors:
 - celecoxib
 - diclofenac
 - diflunisal
 - meloxicam
 - nabumetone
 - naproxen
 - piroxicam
 - rofecoxib
 - sulindac

Parameter Distribution by Treatment Group

