Dissertation Work Formulation

Dominic DiSanto; Tianxi Cai & Junwei Lu

Department of Biostatistics, Harvard University

August 19, 2024

Today's Goals/Questions

- Review our set-up (observables, data-generating processes)
 - Longitudinal modified treatment policy (LMTP) framework
- Understand most relevant extensions of treatment assignment
- Understand PheWAS-relevant formulation of outcomes in Y

- Set-up
- 2 Treatment/Policy Evaluation (d, A)
- 3 PheWAS (Y)
- 4 Summary/Questions

Set-Up and Observables

- ullet For times $t=1,\ldots, au$, observe $Z=(L_1,A_1,\cdots L_{ au},A_{ au},Y)\sim \mathbb{P}$
 - Permit the short-hand $\overline{A}_t = (A_t, \cdots, A_1)$, \overline{L}_t similarly defined, and history as $H_t = (\overline{A}_{t-1}, \overline{L}_t)$
 - Covariates $L_t, \ e.g. \begin{cases} \text{EHR Codes Accumulation or general Hawkes process} \\ \text{Demographic/static information} \end{cases}$
 - Treatment A_t : binary, multinomial, continuous (e.g. dose)
 - More detailed discussion under Treatment/Policy Evaluation section
 - Outcome Y_t
 - For first discussion, assume univariate Y
 - More detailed discussion under PheWAS section

Data Generating Process & Treatment Mechanism

- Assume generating functions with noise $U = (U_A, U_L, U_Y)$
 - $\bullet \ A_t = f_{A_t}(H_t, U_{A_t})$
 - $\bullet L_t = f_{L_t}(A_t, H_t, U_{L_t})$
 - $Y = f_Y(A_\tau, H_\tau, U_Y)$
- ullet Assume a new assignment function $\mathrm{d}(a_t,h_t^\mathrm{d}) o a_t^\mathrm{d}$
- Typical non-parametric SEM set-up (similar, somewhat more general to Aaron Sonabend's SSRL set-up)

Example d functions I

- Thresholding, e.g. patient's with SBP> 130 receive drug H and otherwise drug G (here $SBP = L_t$)
 - $A_t^{\text{dl}} = \text{dl}(a_t, h_t) = \mathbb{1}(SBP_t > 130)H + \mathbb{1}(SBP_t \le 130)G$
- Shifting for continuous treatments, e.g. drug dose
 - If $P(A_t < u_t(h_t)|H_t = h_t) = 1$, then

$$\mathrm{d}(a_t,h_t) = egin{cases} a_t + \delta & a_t \leqslant u_t(h_t) - \delta \ a_t & a_t > u_t(h_t) - \delta \end{cases}$$

Example d functions II

- Can induce stochastic interventions using noise $\varepsilon \perp \mathbb{P}$, now $d(a_t, h_t, \varepsilon)$
- Ex: Shifted/Incremental Propensity Score. For a binary treatment with density $g(a|h_t)$ (and user defined $\delta > 0$),

$$g_t^{\text{d}}(1|h_t) = rac{\delta g_t(1|h_t)}{\delta g_t(1|h_t) + 1 - g_t(1|h_t)}$$

$$d(a_t, h_t) = \mathbb{1}(\epsilon_t \leq g_t^d(1|h_t)) \text{ for } \epsilon_t \sim U(0, 1)$$

Counterfactuals

- Observe \overline{A}_t , with counterfactuals generated by the assignment functions (defined recursively through t=1)
 - Write the counterfactual $A_t(A_{t-1}^d) = f_{A,t}(H_t(\overline{A}_{t-1}^d), U_{A,t})$
 - "What treatment would we observe at A_t , had we applied our intervention policy ${\rm d} through time \ t-1?"$
 - "Natural value of treatment"
 - $L_t(\overline{A}_{t-1}^{dl}) = f_{L,t}(A_{t-1}^{dl}, H_{t-1}^{dl}, U_{L,t})$
 - $\bullet \ \ Y(\overline{A}^{\mathrm{dl}}) = f_{Y}(\overline{A}_{\tau}^{\mathrm{dl}}, H_{\tau}(\overline{A}_{\tau-1}^{\mathrm{dl}}), U_{Y})$
- ullet Estimand under a given policy d is $heta:=\mathbb{E}\left[Y(\overline{A}^{\mathrm{d}})
 ight]$

Extensions/Problem Formulation

- Extend the framework's treatment regime (for a simple/univariate outcome)
 - Via assignment function(s) d
 - Via treatment vector A_t

• For simple treatment/policy comparisons, multivariate or high-dimensional $Y \in \mathbb{R}^d$

- Set-up
- 2 Treatment/Policy Evaluation (d, A)
- 3 PheWAS (Y)
- 4 Summary/Questions

d

- We can alter d
 - ullet Conceptually we are then trying to estimate parameters/functions that describe treatment patterns, while comparing $\mathbb{E}[Y^{\mathrm{d}}]$
 - We can write assignment function as complicated/high-dimensional function
 - $d(\overline{a}_t, \overline{\ell}_t; \alpha, \beta) = \alpha^T \overline{a}_t + \beta^T \overline{\ell}_t$
 - Non-parametric $d = m(\overline{a}_t, \overline{\ell}_t)$
- We can extend A_t (e.g. A_t is now multivariate, captures treatment more globally)
 - Conceptually we still have "control" over assignment via d that we can (and must) specify
 - ullet e.g. high-dimensional, categorical $A \in \mathbb{R}^d$ drug choices

- 1 Set-up
- 2 Treatment/Policy Evaluation (d, A)
- 3 PheWAS (Y)
- 4 Summary/Questions

PheWAS

- Can simplify treatment w/in previous framework
 - i.e. binary treatment A, two policies $d_0(a_t) = a_t$, $d_1(a_t) = 1 a_t$, $t = \{0, 1\}$
- ullet Now interested in settings with outcome diversity, $Y \in \mathbb{R}^d$
- Sub-group analysis?
 - e.g. In RA, how could we identify sub-types of heart failure (preserved vs reduced ejection fraction) for which anti-TNF is effective?
- Disjoint outcomes?
 - Across $Y \in \mathbb{R}^d$ —outcomes (possibly dependent, overlapping), how do we identify the subset of Y (if any) for which drug G has non-0 treatment effect?

- 1 Set-up
- 2 Treatment/Policy Evaluation (d, A)
- 3 PheWAS (Y)
- 4 Summary/Questions

Summary/Questions

- Is this (LMTP) set-up the appropriate framework which we can extend?
- What are the relevant extensions of treatment trajectories via A_t , d?
 - Parameterizing $d(a_t, h_t)$ as a high-dimensional policy
 - Specifying a form for A_t with simple policy d
- What are the relevant extensions outcomes Y for desired PheWAS studies (and how can we do better than naïve multiple comparisons adjustment)?
 - Sub-group identification?
 - High-/Multi-dimensional $Y \in \mathbb{R}^d$?

Appendix

5 Identification Assumptions

6 Misc. Goals/Timeline

Identification

- ② Strong Sequential Randomization: $U_{A_t} \perp \underline{U}_{L,t+1}, \underline{U}_{A,t+1} \mid H_t, \ \forall t \in [\tau]$

The Strong Sequential Randomization assumption can be slightly weakened for stochastic interventions

5 Identification Assumptions

Misc. Goals/Timeline

Rough Timeline of G3 ('24-Spring '25) I

- Continue/complete early work
 - August Submit Weijing-Zongqi applied paper
 - Fall-Winter Complete draft of optimal assortment work with Junwei
- October Finalize committee
 - Possibly Rajarshi, Sebastien, Nima
- March Oral Examination