Update Slides

Dominic DiSanto; Junwei Lu, Tianxi Cai

January 16, 2025

Recap

Recap

- Motivated by effects of drug-switching after TNFi drugs in RA patients, interested in Causal PheWAS type analysis of secondary outcomes
- Previously discussed/presented Hawkes estimation, elided formal problem statements and causal assumptions

Recap

Recap

- Motivated by effects of drug-switching after TNFi drugs in RA patients, interested in Causal PheWAS type analysis of secondary outcomes
- Previously discussed/presented Hawkes estimation, elided formal problem statements and causal assumptions

Goals Today

- Articulate our problem more concretely in the LMTP/DTR and Off-Policy Evaluation formulations
 - Focus on novelties/nuances of $\mathbf{Y} \in \mathbb{R}^d$

Summary

- Using the LMTP framework with extensions for simultaneous inference from Kennedy (2024)
 - Pros: Nicely characterized univariate problem
 - Weaknesses: Final inference still likely underutilizing shared information within Y
- In OPE, remains unclear to me how to use multivariate reward space $R \in \mathbb{R}^d$

Outline

- Problem Statement
- 2 LMTP Formulation
- 3 Kennedy (2024) Causal Inference in Multiple Outcomes

Motivation

Problem

- Persons with RA most often receive TNFi drugs as a first course of treatment
- Observe switching other drug classes based on non-response and/or adverse event or clinical history
- The goal is to understand:
 - For which patients will switching be effective? (ATE/CATE problem)
 - How to optimize timing of switching? (DTR/OTR problem)

Considerations

- Certain events (e.g. cardiac arrest) prohibit certain treatment paths
 - Possible positivity violation (pending identifiability assumptions)

Motivation

Problem

- Persons with RA most often receive TNFi drugs as a first course of treatment
- Observe switching other drug classes based on non-response and/or adverse event or clinical history
- The goal is to understand:
 - For which patients will switching be effective? (ATE/CATE problem)
 - How to optimize timing of switching? (DTR/OTR problem)

Considerations:

- Certain events (e.g. cardiac arrest) prohibit certain treatment paths
 - Possible positivity violation (pending identifiability assumptions)

Outline

- Problem Statement
- 2 LMTP Formulation
- 3 Kennedy (2024) Causal Inference in Multiple Outcomes

Set-Up and Observables

- For times $t=1,\ldots, au$, observe $Z=(L_1,A_1,\cdots L_{ au},A_{ au},Y)\sim \mathbb{P}$
 - Covariates L_t , Binary treatment A_t ; Outcome $Y_t \in \mathbb{R}^d$
 - Write history $h_t = (A_1, L_1, \dots, L_t)$
- Implicitly, assume that observed treatments/actions $A_{1:\tau}$ follow some current behavior/policy
- Propose a policy, $\mathbf{d}:(a_t,h_t)\mapsto A^d_{t+1}$ with which we generate the counterfactual paths
- Estimand: $\mathbb{E}(Y(\overline{A}^{\mathbf{d}}))$

Example Switching Policy

$$\mathbf{d}(a_t, [h_{1t}, h_{2t}], \varepsilon_t) = \begin{cases} \textit{TNFi} & \textit{if } h_{1t} = 0 \ \& \ h_{2t} = 0 \\ \textit{CDA} & h_{1t} = 0 \ \& \ h_{2t} = 1 \ \& \ \epsilon_t < 0.5 \\ \textit{IL} - 6\textit{R} & h_{1t} = 1 \ \& \ h_{2t} = 1 \ \& \ \epsilon_t < 0.5 \end{cases}$$

$$(A_t, H_t)_{t \in T} \perp \varepsilon_t \sim U(0, 1)$$

- Requires us to formulate **d** policy shared across observations
- If $(a_t, h_t) \in \operatorname{supp}(A_t, H_t)$ then $\mathbf{d}(a_t, h_t) \in \operatorname{supp}(A_t, H_t)$
 - i.e. the positivity assumption is flexible to our proposed policy

Extensions to Multiple Outcomes

- Diaz 2021 derive the EIF, propose estimation for univariate Y (well-characterized)
- Using results from Kennedy (2024), can construct outcome specific IF's, preform controlled hypothesis testing
 - Requires extensions of Kennedy Lemma's for IF's of the form in Diaz

Outline

- 1 Problem Statement
- 2 LMTP Formulation
- 3 Kennedy (2024) Causal Inference in Multiple Outcomes

Kennedy (2024) Problem

- Observe $(X, A, Y)_i, Y \in \mathbb{R}^d$
- Goal is to estimate $\tau_k = \mathbb{E}(Y_k(1) Y_k(0), k = 1, \dots, d)$
- Construct outcome-specific IF's, φ_k
- Control FWER of testing via a Gaussian multiplier bootstrap procedure (tailored towards semiparametric inference problem)

Strength: Natural extension for problems whose individual IF-based estimation properties are well characterized

Weakness: Using little/no covariance/shared information among outcomes $Y_{1\cdot k}$

Summary

- Using the LMTP framework with extensions for simultaneous inference from Kennedy (2024)
 - Pros: Nicely characterized univariate problem
 - Weaknesses: Final inference still likely underutilizing shared information within Y
- In OPE, remains unclear to me how to use multivariate reward space $R \in \mathbb{R}^d$
- Next Steps:
 - Continue review of OPE methods/literature
 - Review/implement simple LMTP analysis

Appendix

Lemma 11 (Gaussian approximation for nested hypotheses). (Kennedy 2024)

For $\tau_j = \tau_j^{\mathrm{TTE}}$ and $\vartheta = \vartheta^{\mathrm{STE}}$. For all $\mathcal{S} \subseteq \mathcal{A}^* \subseteq [p]$, define $M_s = \max_{j \in \mathcal{S}} \left| \sqrt{n} \left(\hat{\nu}_j - \tau_j \right) / \hat{\partial}_j \right|, \hat{\varphi}_i = \left(\hat{\varphi}_{ij} \right)_{j \in \delta'}, \hat{\mathbf{E}}_s = n^{-1} \sum_{i=1}^n \hat{\phi}_i \hat{\varphi}_i^{\top}$, and $\hat{\mathbf{D}}_s = \operatorname{diag} \left(\hat{\partial}_j \right)_{j \in \delta}$. Consider null hypotheses H_0^s indexed by \mathcal{S} that $\forall j \in \mathcal{S}, \tau_j = \tau_j^*$. As $m, n, p \to \infty$, it holds that

$$\sup_{H_0^{\delta}:s\subseteq\mathcal{A}^*}\sup_{x\in\mathbb{R}}\left|\mathbb{P}\left(\mathbb{M}_s>x\right)-\mathbb{P}\left(\left\|\boldsymbol{g}_{\delta}\right\|_{\infty}>x\mid\left\{\mathbb{Z}_i\right\}_{i=1}^n\right)\right|\xrightarrow{\mathrm{P}}0,$$

where $\mathbf{g}_s \sim \mathcal{N}\left(\mathbf{0}, \hat{\mathbf{D}}_S^{-1} \hat{\mathbf{E}}_S \hat{\mathbf{D}}_s^{-1}\right)$. The conclusion also holds for $\tau_j = \tau_j^{\mathrm{QTE}}$ and $\vartheta = \vartheta^{\mathrm{QTE}}$ under conditions in Proposition 10 and Assumption 4.