Causal PheWAS

Dominic DiSanto

Verity Bioinformatics Retreat 2024

Septmber 20th, 2024

Today's Agenda

- Describe a relevant set-up and motivation
- Review the set-up and preliminary analysis of a Hawkes Process approach
 - Currently a simplified set-up: limited to cardiovascular PheCodes, binary treatment comparison, and exponential Hawkes kernel
 - Review "results" for their relevance, intepretability
- Questions/Discussion Primers

Outline

PheWAS & Hawkes Modelling

Preliminary Analysis

Dominic DiSanto Hawkes Work Septmber 20th, 2024 3 / 27

PheWas Set-Up

- Phenome-Wide Association Study
 - A "inversion" of the GWAS

Figure: PheWAS Manhattan-Style Plot, via Carroll (2018) *Phenome Wide Association Studies (PheWAS) in R*

Dominic DiSanto Hawkes Work Septmber 20th, 2024 5 / 27

PheWas Set-Up

- Phenome-Wide Association Study
 - A "inversion" of the GWAS
- Apt set-up for studying unintended (ideally positive) consequences of current treatments
 - Identifying targets for off-label use
 - Secondary outcome mitigation

Causal PheWAS

- A typical/simple causal problem may compare a single outcome between two treatment groups
 - ullet e.g. $\mathbb{E}[Y(1)-Y(0)]$, the average treatment effect
- For multivariate (or high-dimensional) Y, naïve (i.e. outcome-by-outcome) analysis is unsatisfactory
- Exising PheWAS papers and implementations tend to follow this more naïve analytic strategy

8 / 27

Hawkes Process Modelling

- Structured EHR data (such as PheCodes)¹ provide high-dimensional outcome data
 - Along with longitudinal/accumulation information
- Self-exciting counting processes are a natural modelling choice, i.e. mutually-exciting Hawkes processes
 - Adverse mental health events
 - Infectious period of a disease
 - Canonical example of earthquakes and aftershocks

¹and related ontologies, e.g. RxNorms, CPT codes, etc.

Hawkes Process Modelling

- A process is uniquely identified by its "intensity function"
 - $\lambda_i(t) = \mathbb{P}(\mathsf{An} \;\mathsf{event}\;\mathsf{occurs}\;\mathsf{from}\;t\;\mathsf{and}\;t + \Delta t\;|\;\mathsf{Patient's}\;\mathsf{event}\;\mathsf{history})$
 - "Instantaneous risk"
- Can parameterize the intensity function of a *p*-dimensional process as

$$\lambda_i(t; \boldsymbol{\mu_i}, \boldsymbol{\alpha}, \boldsymbol{\beta}) = \mu_i + \sum_{i=1}^p \sum_{t_{ik} < t} \alpha_{ij} \exp \left\{ -\beta_{ij} (t - t_{jk}) \right\}$$

- μ_i "baseline intensity" for event type i
- α_{ij} "intensity excitation for event of type i after an event of type j"
- β_{ii} "intensity decay for event of type i after an event of type j"

Dominic DiSanto Hawkes Work Septmber 20th, 2024 9 / 27

Hawkes Process Modelling

- Can write treatment-group specific intensities and compare
 - $\lambda_k^{(0)}(t)$ the hypothetical intensity function for a TNFi persister at time t
 - ullet $\lambda_k^{(1)}(t)$ the hypothetical intensity function for a switcher at time t
- What can we compare about intensity functions (and what is useful to ask/compare)?
 - $\hat{\lambda}_k^{(1)}(t) \hat{\lambda}_k^{(0)}(t)$
 - $\hat{\alpha}_{ij}^{(1)} \hat{\alpha}_{ij}^{(0)}$
 - $\hat{\beta}_{ij}^{(1)} \hat{\beta}_{ij}^{(0)}$

Outline

PheWAS & Hawkes Modelling

Preliminary Analysis

Preface

Goals include attempting to:

- Identify what research questions are useful to ask
- Interrogate how to pursue, estimate, present

Patients

Analytic cohort included n = 234 patients with

- RA diagnosis from 2016-Present
- Received TNF- α inhibitors
- ullet No "other" treatment prior to TNF-lpha inhibitor initiation

Patients

Analytic cohort included n = 234 patients with

- RA diagnosis from 2016-Present
- Received TNF- α inhibitors
- ullet No "other" treatment prior to TNF-lpha inhibitor initiation

Considered a simple, binary treatment regime:

- TNF- α inhibitor "persisters" (n = 197, 84.2%)
- Anytime-switchers (n = 37, 15.8%)

Patients

Analytic cohort included n = 234 patients with

- RA diagnosis from 2016-Present
- Received TNF- α inhibitors
- ullet No "other" treatment prior to TNF-lpha inhibitor initiation

Considered a simple, binary treatment regime:

- TNF- α inhibitor "persisters" (n = 197, 84.2%)
- Anytime-switchers (n = 37, 15.8%)

Set a 4-year endpoint of observation window

14 / 27

Cohort/Treatment Summary Slide

Dominic DiSanto Hawkes Work Septmber 20th, 2024

Cohort/Treatment Summary Slide

Figure: Timing and class of treatment change (among n = 37 "switchers")

Dominic DiSanto Hawkes Work Septmber 20th, 2024 15 / 27

PheCodes & Counting Processes

• Observed P = 364 distinct observed PheCodes

PheCodes & Counting Processes

- Observed P = 364 distinct observed PheCodes
- Began by focusing on cardiovascular related PheCodes (4**.**)
 codes, grouped at the three digit level (e.g. 400, 401, etc.)
 - These constitute our p = 27 mutually exciting processes
 - Solely a convenience/simplifying construction for our analysis

PheCodes & Counting Processes

- Observed P = 364 distinct observed PheCodes
- Began by focusing on cardiovascular related PheCodes (4**.**)
 codes, grouped at the three digit level (e.g. 400, 401, etc.)
 - These constitute our p = 27 mutually exciting processes
 - Solely a convenience/simplifying construction for our analysis
- n = 94 patients has at least one event among these p = 27 PheCodes (after 3-digit truncation)
 - 71 (\sim 75% remained on TNF- α medications throughout their history, 23 (\sim 25% switched)

Observed PheCodes as Hawkes Processes

- Assigned binary treatment, "TNF- α inhibitors only" compared to "any-time drug-switch"
 - "Drug-switch" is any post-TNF records of IL-6, COX, JAK, CTLA6, or Anti-CD20 related medications
 - Currently excluding patients who received non-TNF drugs prior to TNF start date
- Began observation period at TNF initiation date
 - i.e. Day 0 is earliest date of TNF receipt

Hawkes Process Parameterization

- We observed these p = 27 inter-related counting processes (i.e. PheCodes occurring across time)
- We can parameterize their intensity functions $\lambda_i(t)$
 - Most easily interpreted as an "instantaneous risk" of an event occurring at time t

Hawkes Process Parameterization

- We observed these p = 27 inter-related counting processes (i.e. PheCodes occurring across time)
- We can parameterize their intensity functions $\lambda_i(t)$
 - Most easily interpreted as an "instantaneous risk" of an event occurring at time t
- Eliding some details, we can write separate intensity functions for events under TNF- α inhibitors and under other treatments
 - $\hat{\lambda}^{(0)}$ describes the intensity function for an event occurring for a patient treated by a TNF-lpha inhibitor
 - $\hat{\lambda}^{(1)}$ for the intensity function of events observed under any other treatment

Hawkes Process Parameterization

- $\lambda_i(t) = \mu_i + \sum_{i=1}^p \sum_{t_{ik} < t} \alpha_{ij} \exp \{-\beta_{ij}(t t_{jk})\}$
 - ullet μ "baseline intensity"
 - α_{ij} "intensity excitation"
 - β_{ij} "intensity decay"
- Can write treatment-group specific intensities
 - $\lambda_i(t)^{(0)} = \mu_i^{(0)} + \sum_{i=1}^p \sum_{t_{jk} < t} \mathbb{1}(t_{jk} \le t_{switch}) \alpha_{ij}^{(0)} \exp\left\{-\beta_{ij}^{(0)}(t t_{jk})\right\}$
 - t_{switch} is time of switch from TNF-inhibitor

Cohort/Treatment Summary Slide

Figure: Timing and class of treatment change (among n = 37 "switchers")

Darkest green, pre-switch events contributed to estimation of $\hat{lpha}^{(0)},\hat{eta}^{(0)}$

Dominic DiSanto Hawkes Work Septmber 20th, 2024 20 / 27

(Simple) Estimation Set-Up

- Estimate $\hat{\mu}, \hat{\alpha}, \hat{\beta}$ by maximum likelihood separately by pre- and post-switch events
 - $\hat{\mu}^{(0)}, \hat{\alpha}^{(0)}, \hat{\beta}^{(0)}$ (under TNF- α inhibitors)
 - $\hat{\mu}^{(1)}, \hat{lpha}^{(1)}, \hat{eta}^{(1)}$ (under treatment switching)
- Compare the calculated intensity functions
 - $\lambda^{(0)}(t; \mu^{(0)}, \alpha^{(0)}, \beta^{(0)})$ and $\lambda^{(1)}(t; \mu^{(1)}, \alpha^{(1)}, \beta^{(1)})$
 - The related research question is somewhat diffuse: "Is drug-switching effective?"

Example Conditional Intensity Comparison

Figure: Conditional intensity function of for a single (arbitrary) patient's 427.** PheCodes

Example Conditional Intensity Comparison

Figure: $\lambda_i^{(1)}(t) - \lambda_i^{(0)}(t)$ for all p = 27 processes (for a single arbitrary patient)

Dominic DiSanto Hawkes Work Septmber 20th, 2024 23 / 27

Parameter Difference Plots

$$\beta_{ij}^{(1)}\,\text{-}\beta_{ij}^{(0)}$$

Parameter Difference Plots

$$\alpha_{ij}^{(1)}\,\text{-}\alpha_{ij}^{(0)}$$

Summary

- The Hawkes process framework for PheWAS allows for nice, joint (and longitudinal) modelling
- Comparison of intensity functions $\lambda^{(1)}, \lambda^{(0)}$ is a natural and immediate estimand
 - ullet Can compare parameters \hat{lpha},\hat{eta}

References I

- PheWAS package in R https://github.com/PheWAS/PheWAS
- Darrous (2023) MR-PheWAS https://www.nature.com/articles/s41467-024-45655-8
- Lin (2024) RR-PheWas https://pubmed.ncbi.nlm.nih.gov/38699370/

Appendix¹

Dominic DiSanto

Verity Bioinformatics Retreat 2024

Septmber 20th, 2024

Summary/Questions I

- What does the analysis comparing $\lambda^{(1)}, \lambda^{(0)}$ actually answer?
- Are other questions/estimands more relevant?
 - Optimal timing of drug-switching (related to assignment operator in LMTP's)
 - More of a policy-evaluation/learning question
 - Identifying related diseases with similar observed effects
 - Trying to build evidence of effectiveness by observing signal/differences among related pathologies
 - i.e. for disease i, examining $\beta_{i,j_c;j_d}$ for "clusters" or relevant cooccurring code $\beta_{j_c}, \dots, \beta_{j_d}$'s
 - What confounder medications to include as additional processes for cohort of persons with RA? Steroids/NSAIDS?

Summary/Questions II

- Symmetry of Hawkes parameters, that is should $\beta_{i,j} = \beta_{j,i}$ and/or $\alpha_{i,j} = \alpha_{j,i}$?
 - That is, should occurrence of PheCode j affect subsequent PheCode i in the same way as preceding PheCode i affects subsequent PheCode j
- Identifying assumptions (allowing us to argue more formally for causality)
- How to aggregate information across all patients? Solely through inference on parameters μ, α, β ?
 - \bullet Complication is that λ is a function of event history (i.e. arrival times)

Drugs/Drug Classes Considered I

Other drugs included but only the following observed in our cohort:

- TNF Blockers:
 - adalimumab
 - certolizumab
 - etanercept
 - golimumab
 - infliximab
- IL-6 Inhibitors:
 - sarilumab
 - tocilizumab
- JAK Inhibitors:
 - tofacitinib
 - baricitinib
 - upadacitinib

Drugs/Drug Classes Considered II

• CTLA-4 Inhibitors:

- abatacept
- COX Inhibitors:
 - celecoxib
 - diclofenac
 - diflunisal
 - meloxicam
 - nabumetone
 - naproxen
 - piroxicam
 - rofecoxib
 - sulindac