Dominic DiSanto

Junwei Lu Reading Group - Summer 2024

July 11, 2024

Outline

- Preliminaries
- 2 High-Dimensional AIPW
- 3 Debiased IPW [WS24
- 4 High-Dimensional Discrete Covariates [Zen+24]

Caveats

- We will focus exclusively on counterfactual/potential outcomes framework
- This excludes
 - Graphical Methods
 - Targeted MLE
 - https://www.khstats.com/blog/tmle/tutorial
 - https://tlverse.org/tlverse-handbook/tmle3.html

Papers of Focus

- "Debiased Inverse Propensity Score Weighting for Estimation of Average Treatment Effects with High-Dimensional Confounders"
 - Yuhao Wang & Rajen Shah [WS24]
- "Causal Inference with High-dimensional Discrete Covariates"
 - Zhenghao Zeng, Sivaraman Balakrishnan, Yanjun Han, Edward H. Kennedy [Zen+24]

Typical Causal Set-Up

- Estimand is ATE, $\tau = \mathbb{E}(Y(1) Y(0))$
- Observe $T \in \{0,1\}^N$, $\mathbf{X} \in \mathbb{R}^{N \times d}$ pre-treatment covariates
- Common assumptions:

Unconfoundedness:
$$\{Y(1), Y(0)\} \perp T \mid \mathbf{X}$$

SUTVA: $Y_i = Y_i(1)Z_i + Y_i(0)(1 - Z_i)$
Positivity: $\mathbb{P}(T_i = 1 \mid \mathbf{X}_i) =: \pi(\mathbf{x}) \in [\epsilon, 1 - \epsilon]$ for $f(\mathbf{x}) > 0$

AIPW

- IPW estimator $\hat{\tau}_{\text{IPW}} := \frac{1}{n} \sum_{i=1}^{n} \frac{T_i Y_i}{\hat{\pi}(X_i)} \frac{1}{n} \sum_{i=1}^{n} \frac{(1-T_i)Y_i}{1-\hat{\pi}(X_i)}$
 - If $\hat{\pi} \stackrel{p}{\rightarrow} \pi$ consistent
- AIPW estimator $\hat{\tau}_{AIPW} = \frac{1}{n} \sum_{i=1}^{n} \frac{T_i(Y_i \mu_i)}{\hat{\pi}(X_i)} \frac{1}{n} \sum_{i=1}^{n} \frac{(1 T_i)(Y_i \mu_i)}{1 \hat{\pi}(X_i)}$
 - \bullet $\,\mu$ is some/any "augmentation" that ideally retains unbiasedness and reduces variance of our estimator
 - $\mu \perp T \mid X$ retains unbiasedness
 - $\hat{\mu}=(1-\hat{\pi}(X))\hat{r}_1(X)+\hat{\pi}(X)\hat{r}_0(x)$ is the common "AIPW"
 - For $r_j(X) = \mathbb{E}(Y(j) \mid X) = \mathbb{E}(Y \mid T = j, X)$

AIPW cont'd

- One can show $\sqrt{n}(\tau_{AIPW} \tau) \stackrel{d}{\rightarrow} N(0, V)$
- Comparing $\hat{\tau}_{AIPW}$ to an oracle (in π, μ) τ_{AIPW} , we have

$$\begin{aligned} |\hat{\tau}_{AIPW} - \hat{\tau}_{AIPW}^*| \\ = O_P \left(\max_{w \in \{0,1\}} \mathbb{E} \left[\left(\hat{r}_w \left(X_i \right) - r_w \left(X_i \right) \right)^2 \right]^{\frac{1}{2}} \mathbb{E} \left[\left(\hat{e} \left(X_i \right) - e \left(X_i \right) \right)^2 \right]^{\frac{1}{2}} \right) \end{aligned}$$

• If r_i , π are $n^{-1/4}$ estimable, $\sqrt{n}(\hat{\tau}_{AIPW} - \tau) \stackrel{d}{\rightarrow} N(0, V)$ and $\hat{\tau}_{AIPW}$ is semiparametrically efficient

Outline

- High-Dimensional AIPW
- High-Dimensional Discrete Covariates [Zen+24]

"Double-Selection" Methods

When do we remain doubly-robust while performing model selection?

- "Double-selection" methods Lasso variable selection followed by unpenalized but supplemented re-fitting
 - Under a (partially-) linear model $Y = \tau T + f(X) + \epsilon$, can recover asymptotic normality under double-Lasso selection [BCH12]
 - Requires $s_{\pi} \vee s_{r} = o\left(\sqrt{n}/\log p\right)$
 - See pg. 11 for details on implementation https://arxiv.org/pdf/1201.0224
 - Similar work by [Far15] with stricter $s_{\pi}s_r = o(\sqrt{n}/\log(p)^{1.5+\delta}), \ \delta > 0$ using group lasso, double-selection style
 - See pg. 21 for procedure, pg. 7 Corollary 1 for sparsity requirements https://arxiv.org/pdf/1309.4686

High-level, these methods require both r, π to be $\sqrt{n}/\log(p)$ -sparse

Dominic DiSanto Causal Inference and RL July 11, 2024 9 / 30

Exploiting Sparsity Structure or "De-biasing" Methods

- [BWZ19] assume linear-logistic model and "ultra"-sparsity of *either* model, under weaker sparsity conditions on the latter
- "Double-robusty sparsity" when we have bounded $||\beta_{\pi}||_1, ||\beta_r||_1$ (see Theorem 1)
 - $s_{\pi} = o(\sqrt{n}/\log(p)), s_r = o(n/\log(p))$ and $||\beta_r||_1$ is large
 - $s_{\pi} = o(n^{3/4}/\log(p)), s_r = o(\sqrt{n}/\log(p))$
- Bias can decompose as $|\hat{\tau}_1 \tau| \le \|n^{-1} \sum_{i=1}^n \left[1 W_i \left(1 + \exp\left(-X_i' \hat{\theta}_{(1)} \right) \right) \right] X_i \|_{\infty} \|\hat{\beta}_{(1)} \beta_{(1)}\|_1$

11 / 30

Exploiting Sparsity Structure or "De-biasing" Methods

- [AIW18]¹ require only $s_r = o(\sqrt{n}/\log(p))$ Athey paper https://arxiv.org/pdf/1604.07125
 - Estimate outcome coefficients $\hat{\beta}$ by lasso
 - Estimate balancing weights γ (see pg. 6/7)
 - $\hat{\mu}_{c} = \bar{X}_{t} \cdot \hat{\beta}_{c} + \sum_{\{i:W_{i}=0\}} \gamma_{i} \left(Y_{i}^{obs} X_{i} \cdot \hat{\beta}_{c} \right)$
 - $|\hat{\mu}_{c} \mu_{c}| \le \|\bar{X}_{t} \mathbf{X}_{c}^{\top} \gamma\|_{\infty} \|\hat{\beta}_{c} \beta_{c}\|_{1} + \left|\sum_{\{i:W_{i}=0\}} \gamma_{i} \varepsilon_{i}\right|$
 - Here $\eta = Y(0) X^T \beta_c$, i.e. outcome regression noise
 - Resulting estimator is \sqrt{n} —consistent and asymptotically normal under additional technical conditions

Dominic DiSanto Causal Inference and RL July 11, 2024

¹Notation here for their primary endpoint, ATT, but extendable to ATE

Outline

- Preliminaries
- 2 High-Dimensional AIPW
- Obliased IPW [WS24]
- 4 High-Dimensional Discrete Covariates [Zen+24]

Estimator

Estimand $\tau = \mathbb{E}(Y(1) - Y(0))$

$$\hat{\tau}_{\mathsf{DIPW}} := \frac{1}{n} \sum_{i=1}^{n} \left(\frac{T_i \left(Y_i - \hat{\mu}_i \right)}{\hat{\pi}_i} - \frac{\left(1 - T_i \right) \left(Y_i - \hat{\mu}_i \right)}{1 - \hat{\pi}_i} \right)$$

000000000

- $\hat{\pi}$ evaluated via lasso logistic regression
- $\hat{\mu}$ is evaluated via a quadratic program, an "orthogonalization" of the AIPW style augmentation
- Requires only $s_{\pi} = o(\sqrt{n}/\log p)$ for consistency, $o(1/\sqrt{\log n})$ estimation of regression models achieves semiparametric efficiency
 - Equivalent to $s_r = o(n/[\log n \log p])$ requirement
 - Caveat: Inference (i.e. Cl's) require s_{π} assumptions

Estimation Procedure Outline

- Estimate $\hat{\pi} = \psi(x^T \hat{\gamma})$ with $\hat{\gamma}$ estimated via lasso on auxiliary data \mathcal{D}_B
 - Assumption: $s_{\pi} = o(\sqrt{n}\log(p))$
- Construct $\tilde{\mu}$, an estimate of μ_{ORA} , using \mathcal{D}_B
- Construct $\hat{\mu}$ using \mathcal{D}_{A} by convex program above
- Plug-in and estimate $\hat{\tau}_{DIPW}$, AIPW style estimator with $\hat{\mu}, \hat{\pi}$

- Observe n, iid $(X, Y, T) \in \mathbb{R}^p \times \mathbb{R} \times \{0, 1\}$, say $\mathcal{D} = (\mathbf{X}, \mathbf{Y}, \mathbf{T})$
 - We will also use auxiliary datasets $\mathcal{D}_A = (\mathbf{X}_A, \mathbf{Y}_A, \mathbf{T}_A), \mathcal{D}_B$
 - Assume X,Y are σ_Y^2,σ_X^2 sub-Gaussian and $\max_{t \in \{0,1\}} |\mathbb{E} Y(t)| < m_Y$
- Assume a logistic model for the propensity $\pi(x) = \mathbb{P}(T = 1 \mid X = x) = \psi(x^T \gamma) := (1 + \exp(-x^T \gamma))^{-1}$
- Let $\mu_{\mathsf{ORA}}(x) := (1 \pi(x)) r_1(x) + \pi(x) r_0(x)$
 - Recall $\mathbb{E} \tau_{\mathsf{ORA}} = \tau$ if $\mu \perp T \mid X$

- Let $\tilde{Y}_i := \frac{T_i Y_i (1-\hat{\pi}_i)}{\hat{\pi}_i} + \frac{(1-T_i) Y_i \hat{\pi}_i}{1-\hat{\pi}_i}$
- Estimate $\hat{\gamma}$ using $\mathcal{D}_{\mathcal{B}}$
- Bias in $\hat{\tau}_{IPW}$ then becomes² determined by

$$\approx \left| \frac{1}{n} \sum_{i=1}^{n} \left(\tilde{Y}_{i} - \mu_{i} \right) X_{i}^{\top} (\hat{\gamma} - \gamma) \right| \leq \frac{1}{n} \left\| \mathbf{X}^{\top} \tilde{\mathbf{Y}} - \mathbf{X}^{\top} \boldsymbol{\mu} \right\|_{\infty} \|\hat{\gamma} - \gamma\|_{1}$$

- $\|\hat{\gamma} \gamma\|_1 = o(s\sqrt{\log p/n})$ whp
- So to control bias of $\hat{ au}_{\mathsf{DIPW}}$, we need only study $\frac{1}{n} \left\| \mathbf{X}^{\top} \tilde{\mathbf{Y}} \mathbf{X}^{\top} \boldsymbol{\mu} \right\|$

16 / 30

²From comparing $\hat{\tau}_{IPW} - \tau_{ORA}$

$$\frac{1}{n} \left\| \mathbf{X}^{\top} \tilde{\mathbf{Y}} - \mathbf{X}^{\top} \boldsymbol{\mu} \right\|_{\infty} \leq \left\| \frac{1}{n_{A}} \mathbf{X}_{A}^{\top} \left\{ \tilde{\mathbf{Y}}_{A} - f\left(\mathbf{X}_{A}\right) \right\} - \frac{1}{n} \mathbf{X}^{\top} \left\{ \boldsymbol{\mu} - f(\mathbf{X}) \right\} \right\|_{\infty} \\
+ \left\| \frac{1}{n_{A}} \mathbf{X}_{A}^{\top} \left\{ \tilde{\mathbf{Y}}_{A} - f\left(\mathbf{X}_{A}\right) \right\} - \frac{1}{n} \mathbf{X}^{\top} \left\{ \tilde{\mathbf{Y}} - f(\mathbf{X}) \right\} \right\|_{\infty}$$

- First term allows us to approximate μ by \mathcal{D}_A , respecting the requirement $\mu \perp T \mid X$
- Second term $\leq c\sqrt{\log p/\min\{n,n_A\}}$ under sub-Gaussian assumptions on X, Y, X_A, Y_A
- f is a fixed function, which we will choose

- Considering $\left\| \frac{1}{n_A} \mathbf{X}_A^{\top} \left\{ \tilde{\mathbf{Y}}_A f\left(\mathbf{X}_A\right) \right\} \frac{1}{n} \mathbf{X}^{\top} \{ \mu f(\mathbf{X}) \} \right\|_{\infty} \leq \eta$
- Select $\eta \asymp \sqrt{\log(p)/n}$, then

$$||\mathbf{X}^T \tilde{\mathbf{Y}} - \mathbf{X}^T \mu||_{\infty}||\hat{\gamma} - \gamma||_1 \leq \sqrt{\log(p)/n} \cdot s\sqrt{\log(p)/n} = s\log(p)/n$$

- $o(n^{-1/2})$ under $x = o(\sqrt{n}/\log(p))$
- Remains to identify f, μ

- Lemma 1: μ_{ORA} minimizes $V(\tau_{ORA})$.
 - So ideally $\mu \approx \mu_{\rm ORA}$, but cannot regress $\tilde{\mathbf{Y}} \sim \mathbf{X}$ (as we require $\mu \perp \mathbf{T} \mid \mathbf{X}$)
 - Construct $\tilde{\mu}$ using \mathcal{D}_B , then estimate $\mu = \operatorname{argmin} ||\mu \tilde{\mu}(\mathbf{X})||_2^2$, using $\tilde{\mu} = f$

Thus estimate $\hat{\mu}$ by the convex program

$$\begin{split} \hat{\boldsymbol{\mu}} &= \mathsf{argmin}_{\boldsymbol{\mu} \in \mathbb{R}^n} \frac{1}{n} \| \tilde{\boldsymbol{\mu}}(\mathbf{X}) - \boldsymbol{\mu} \|_2^2 \\ \mathsf{subject to} \ \left\| \frac{1}{n_A} \mathbf{X}_A^\top \left\{ \tilde{\mathbf{Y}}_A - \tilde{\boldsymbol{\mu}} \left(\mathbf{X}_A \right) \right\} - \frac{1}{n} \mathbf{X}^\top \{ \boldsymbol{\mu} - \tilde{\boldsymbol{\mu}} (\mathbf{X}) \} \right\|_{\infty} \leq \eta \end{split}$$

Estimation Procedure Outline

- Estimate $\hat{\pi} = \psi(x^T \hat{\gamma})$, $\hat{\gamma}$ estimated via lasso on auxiliary data \mathcal{D}_B • Assumption: $s_{\pi} = o(\sqrt{n}\log(p))$
- Construct $\tilde{\mu}$, an estimate of μ_{ORA} , using \mathcal{D}_B
- Construct $\hat{\mu}$ using \mathcal{D}_A by convex program above
- Plug-in and estimate $\hat{\tau}_{\text{DIPW}}$, AIPW style estimator with $\hat{\mu}, \hat{\pi}$

Inference

- See Theorem 3 (pg. 11) for asymptotic normality result and subsequent CI construction
 - Note new dependence on $\|\mu \mu_{ORA}\|_{\infty}$ (both) and $s_{\pi} = o(\sqrt{n}/\log(p))$ assumption (CI construction only)

Additional Notes

- Asymptotic near-normality result $\sqrt{n} (\hat{\tau}_{DIPW} \tau) = \delta + \sigma_{\mu} \zeta_1 + \sigma \zeta_2$ conditional on \mathcal{D}
 - $\delta < c(s + \sqrt{s \log(n)} \log(p) / \sqrt{n})$ whp
 - ullet η is "near-Normal" in a Berry-Esseen sense, see Theorems 2 & 3
- Can use a sample-splitting procedure in place of hold-out/auxiliary data sets
- Can extend to link functions (say ϕ) beyond $\psi(x) = (1 + \exp(-x))^{-1}$, with conditions on ϕ', ϕ''

Outline

- Preliminaries
- 2 High-Dimensional AIPW
- Debiased IPW [WS24]
- 4 High-Dimensional Discrete Covariates [Zen+24]

Set-Up

- Observe iid $(Y, X, A) \in \{0, 1\} \times \{0, ..., d\}^K \times \{0, 1\}$
 - $P(X = k) = p_k, k \in [d]$
 - $A \mid X = k \sim Ber(\pi_k)$
 - $Y \mid X = k, A = a \sim Ber(\mu_{ak})$
 - $q_{ak} = \mathbb{P}(X = k, A = a, Y = 1) = p_k [a\pi_k + (1-a)(1-\pi_k)] \mu_{ak}$
 - $w_k = \mathbb{P}(X = k, A = 1) = p_k \pi_k$
- Estimand is typical

$$\psi = \mathbb{E}[Y(1) - Y(0)] = \mathbb{E}[\mathbb{E}[Y|X, A = 1] - \mathbb{E}[Y|X, A = 0]]$$

- Typical causal assumption, here positivity is on $\pi_k, k \in [d]$
 - Interesting/specific consideration of ϵ here as we might expect $\epsilon_n \to 0$ as $n \to \infty$ see Remark 1

Estimator Equivalence

Consider our suite of classical estimators

$$\begin{split} \widehat{\psi} &= \sum_{k=1}^{d} \widehat{\rho}_{k} \left(\widehat{\mu}_{1k} - \widehat{\mu}_{0k} \right) = \sum_{k=1}^{d} \widehat{\rho}_{k} \left(\frac{\widehat{q}_{1k}}{\widehat{w}_{k}} - \frac{\widehat{q}_{0k}}{\widehat{\rho}_{k} - \widehat{w}_{k}} \right) \\ \widehat{\psi}_{\mathrm{reg}} &= \mathbb{P}_{n} \left[\widehat{\mu}_{1X} - \widehat{\mu}_{0X} \right], \\ \widehat{\psi}_{\mathrm{ipw}} &= \mathbb{P}_{n} \left[\frac{AY}{\widehat{\pi}_{X}} - \frac{(1 - A)Y}{1 - \widehat{\pi}_{X}} \right], \\ \widehat{\psi}_{\mathrm{dr}} &= \mathbb{P}_{n} \left[\frac{A(Y - \widehat{\mu}_{1X})}{\widehat{\pi}_{X}} + \widehat{\mu}_{1X} - \frac{(1 - A)(Y - \widehat{\mu}_{0X})}{1 - \widehat{\pi}_{X}} - \widehat{\mu}_{0X} \right] \end{split}$$

Claim: $\hat{\psi} = \hat{\psi}_{Reg} = \hat{\psi}_{IPW} = \hat{\psi}_{AIPW}$ for $\hat{\psi}$ constructed using sample-average plug-in estimators for μ, π, q, w

So we consider only

$$\widehat{\psi} = \sum_{k=1}^{d} \widehat{p}_k \left(\widehat{\mu}_{1k} - \widehat{\mu}_{0k} \right) = \sum_{k=1}^{d} \widehat{p}_k \left(\frac{\widehat{q}_{1k}}{\widehat{w}_k} - \frac{\widehat{q}_{0k}}{\widehat{p}_k - \widehat{w}_k} \right)$$

$$= \widehat{\psi}_1 - \widehat{\psi}_0$$

$$\psi = \sum_{k=1}^{d} p_k (\mu_{1k} - \mu_{0k}) = \sum_{k=1}^{d} p_k \left(\frac{q_{1k}}{w_k} - \frac{q_{0k}}{p_k - w_k} \right)$$

$$= \psi_1 - \psi_0$$

Estimation Rates

- See Proposition 3 for bias-derivation, requires d = o(n) scaling
- See Proposition 4 for minimax lower bound contains $\frac{d^2}{n^2 \log^2 n}$ terms, that is $\hat{\psi}$ is minimax optimal up to log factors

References I

- [AlW18] Susan Athey, Guido W. Imbens, and Stefan Wager.

 Approximate Residual Balancing: De-Biased Inference of

 Average Treatment Effects in High Dimensions. Jan. 31, 2018.

 arXiv: 1604.07125 [econ, math, stat].
- [BCH12] Alexandre Belloni, Victor Chernozhukov, and Christian Hansen.

 Inference on Treatment Effects After Selection Amongst

 High-Dimensional Controls. May 9, 2012. arXiv:

 1201.0224[econ, stat].
- [BWZ19] Jelena Bradic, Stefan Wager, and Yinchu Zhu. Sparsity Double Robust Inference of Average Treatment Effects. May 2, 2019. arXiv: 1905.00744 [econ, math, stat].

References II

- [Far15] Max H. Farrell. "Robust Inference on Average Treatment Effects with Possibly More Covariates than Observations". In: Journal of Econometrics 189.1 (Nov. 2015), pp. 1–23. arXiv: 1309.4686 [econ, math, stat].
- [WS24] Yuhao Wang and Rajen D. Shah. Debiased Inverse Propensity Score Weighting for Estimation of Average Treatment Effects with High-Dimensional Confounders. Apr. 11, 2024. arXiv: 2011.08661 [math, stat].
- [Zen+24] Zhenghao Zeng et al. Causal Inference with High-dimensional Discrete Covariates. May 5, 2024. arXiv: 2405.00118 [math, stat].

Misc. Undiscussed Papers I

 "Debiasing the Lasso: Optimal Sample Size for Gaussian Designs" -Adel Javanmard, Andrea Montanari

```
https://arxiv.org/pdf/1508.02757
```

- Discusses gap between lasso rate $s = o(n/\log p)$ and $s = o(\sqrt{n}/\log p)$ requirement in Slide 9 refs
- "Deep Neural Networks for Estimation and Inference" Max H.
 Farrell, Tengyuan Liang, Sanjog Misra
 https://arxiv.org/pdf/1809.09953
 - Establishes conditions for semi-parametric efficiency of ATE when using deep NN's
- "Program Evaluation and Causal Inference with High-Dimensional Data" - Belloni, Chernozhukov, Fernandez-Val, Hansen https://arxiv.org/pdf/1311.2645
 - Contemporary with some of the "double-selection" methods discussed

Dominic DiSanto Causal Inference and RL July 11, 2024 30 / 30