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Papers of Focus

@ Primarily
e Doubly-Robust Functional Average Treatment Effect Estimation

@ Lorenzo Testa, Tobia Boschi, Francesca Chiaromonte, Edward H.
Kennedy, Matthew Reimherr

@ Secondarily

e Double robust estimation of functional outcomes with data missing at
random

o Xijia Liu, Kreske Ecker, Lina Schelin, Xavier de Luna

@ Other related results:
o Causal Inference on Distribution Functions
@ Zhenhua Lin, Dehan Kong, Linbo Wang

e One-Step Estimation of Differentiable Hilbert-Valued Parameters
@ Alex Luedtke, Incheoul Chung

Dominic DiSanto T TS


https://arxiv.org/abs/2501.06024
https://arxiv.org/pdf/2411.17224
https://arxiv.org/pdf/2411.17224
https://arxiv.org/pdf/2101.01599
https://arxiv.org/pdf/2303.16711

00@000

Typical Causal Set-Up

o Consider observing iid data (Y;, A;, X;)ic[n]
o Y;eR A €{0,1},X; € RY
o Interest lies in contrasts of potential outcomes Y(1), Y(0)

@ Make “causal” assumptions to translate functions of unobservable
potential outcomes to observable data:

e Unconfoundedness, SUTVA, Positivity

@ Construct estimands of interest
o Most commonly ATE: 7 = E[Y(1) — Y(0)] or related variant (CATE,
ATT)

o AIPW estimator
R A1) A0)  A(Yi—fy Yi—pi
Fapw = 2300 M — g ()+7( s 712,1W,)’”
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Functional Outcomes

@ In most settings, Y; is some scalar (binary/continuous outcome,
count of recurrent events, time-to-event)

@ Recent results for functional outcomes, say );
o Y € C(T) for some domain, e.g. 7 =10, T]
e e.g. disease trajectories, recurrent temporal data, etc.

@ Now define relevant estimands that are themselves random functions:
o ATEf :=E[Y(1) — Y(0)], the mean function of a stochastic process

o Where as before, our estimand was ATE : & — R, we now have
ATE; : &Z — C(T)
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Functional Outcomes

@ Fundamentally, we still want to construct an estimator that is
e Doubly-robust (model and ideally rate)

e Has asymptotic properties that permit inference

@ For random functions, we can asymptotcally approximate as Gaussian
Processes

@ Then conduct inference using existing FDA methods for simultaneous
confidence bands
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Goals/Strategies

@ Review extensions of the “typical’ causal/doubly-robust estimation
procedure to functional outcomes
o e.g. disease trajectories, recurrent temporal data, etc.

@ Observe a seemingly common tool-kit for constructing an estimator,
performing inference
e Build a “classical” doubly-robust estimator

e (1) Finite-dimensional asymptotic normality and (2) tightness of
measure

e Approximate as a Gaussian process, construct confidence bands
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Estimation and Double-Robustness

Set-Up

@ Observe data D = (D,-),-e[n] = (Vi, X;, Ai)ie[n]

o ATEf :=E[Y(1) - Y(0)] = Ey()(D) — 1°(D)]

@ For

1{A = a} (29 — 42 (X))

~@ (D) = u(X) + 7(3)(X)

where

p@ =R | X, A= 4
7 = P(A=a|X)
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Estimation and Double-Robustness

The BDR_FOS Estimator

A(Z — iD(X))
7((X)

E /O(D)| =E @ (x) +

e
—E[E[Y|X,A=1]]+E |E A(@W(D‘(‘;)(X)) X
:Efg:/(l)] ~

We can then estimate ATE as (with some background cross-fitting of
nuisance functions)

N 1<
1N s p) 400
BDR—Fos : p ;’Y (D) - 4™(D)

(Here we use the authors’ notation, where 8 = ATE, and “DR-FOS' stands for

“Doubly-Robust Function-on-Scatar’)
Dominic DiSanto C T Estimation ] March 6, 2025 10 / 26



Estimation and Double-Robustness

Robustness of 6DR—FOS

@ Model and rate-robustness come from similar analysis as in the scalar
setting

o Analyze the von mises expansion as three terms (1) CLT term, (2)
Empirical Process, and (3) Remainder=op(1)

@ Note on rate-robustness:
e The rate-robustness proof is shown for finite-dimensional projections of
BDR-Fos
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Inference/Asymptotic Gaussianity
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Inference/Asymptotic Gaussianity

Main Result

Theorem

Theorem 3.9 in Testa 2025 Under the causal identification and inference
assumptions (next slide),

Vn(BpR_Fos — B) ~» GP(0,X)

for X(s, t) = Elp(D, s)¢(D; t)] where ¢(D) = y)(D) — 1O(D) - 3 is
the influence function, and p(D; s) the influence function defined at time s

v

@ Show asymptotic normality of finite-dimensional projection of
BDR-Fos
@ Show tightness of measure
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Inference/Asymptotic Gaussianity

Assumptions

Assumption 3.4 (Inference). Let the number of cross-fitting folds be fixed at J, and assume that:
a. For each j €{1,...,J}, and for every one-dimensional projection ¢ (2;t), one has
571 (95 1) L (@:0)
¢ H ¢ (2;t) .

b. For every one-dimensional projection ¢ (2; t), one has
1 i: 0
— D R} =0p(1),
s
where R = L1 ()= B(e) + [ ¢ (2;¢) dP.
c. Given & > 0, 2@ is bounded away from & and 1 — & with probability 1.

d. For any & > 0, the functional outcome satisfies

E[ sup |?1/(s)—'21/(t)|:| <L 9
|s—t|<é
for some constant L.

e. For any & > 0 and for a € {0,1}, the estimated regression function satisfies

[E[ sup |ﬂ(“)(.s)—ﬁ(“)(t)|] <19s

|s—t|<&

for some constant L(®,
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Inference/Asymptotic Gaussianity

Finite-Dimensional Aymptotic Normality

o Take the von Mises expansion and study the (1) CLT, (2) Empirical
Process, and (3) remainder terms

Lemma 3.7 (Asymptotic Normality of finite dimensional projections). Let k € N and t,,...,t; €
T be fixed. Under Assumptions 2.1 (identifiability) and 3.4 (inference), one has

ﬁ((ﬁox-ns(tl), - :ﬁDR-FoS(tk))T —(B(t1); - -,ﬁ(fk))T) > (0,2, ) 14

,,,,,,,,,,,,,,,,,,,,
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Inference/Asymptotic Gaussianity

Proof Sketch

Take the von mises expansion,

where By, 1, = [Bor—Fos(t1, - -, SoR-Fos (t))] "
® \/n> vy ... 1 (D;) is mean 0, finite variance (CLT term)

o /n(Pp—P)(P4.... 4,(Di) — vy, 1, (D)) is the Empirical Process term
(controlled via cross-fitting to be op(1))

@ The remainder term is op(1) by assumption
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Inference/Asymptotic Gaussianity

Proof Sketch

The remainder term R> above is the source of the so-called “strong” or
“rate” double-robustness.

1
I(D) B A<1>(D “”

/ ’1 —x(1 N A(1) D)‘ ’M(O) D) — (D)‘ (1- W(l))dP
< z / ]W(l)(D) — ﬁ(l)(D)H,u (D) — ﬂ(l)(D)]d]P’
- é / #D(D) — #1(D)||u (D) — pO)(D)|dP

RS =

ﬁ(l)(p)‘ D ap

with £ coming from the positivity assumption (and all w, /i implicitly indexed at a
single time point tq,q € [1,...,k]).
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Inference/Asymptotic Gaussianity
Extension to Infinite Dimensional Result

@ Remains only to show “tightness” of measure
o lims_olimsup,_, . Pw(Opr-Fos > €;9)] =0
o Here w is the modulus of continuity w(f; ) = supj,_y < 6|f(t) — f(s)]

W(ﬁDR-Fos; o)= I Su|I<)5 |l§Dn-Fos(5) - ﬁDR-FoS(t)l
s—t|1<

I

1 A
1 i Ay Y W (y..
<=> (1+’ﬁ:(1)(X1’)) sup |aM(X;58)— (X5 0)|

ni:l [s—t|<&
1g ( 1—4;

+— 1+A—L) sup |pOX;;s)— o0OX;; ¢
n; T A0E) |H|25|“ (X;59) = O 0)|

C A —AN(X)
- - sup |%(s) — #(t)]
; AWK —AWX)) jo—r1<5

= M(Bpr-ros; 0) -

+
S
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Inference/Asymptotic Gaussianity

Summary

o "“Typical” causal set-up extends to function estimation, translated to

function estimands
@ Retain similar notions of double-robustness
o Noting rate-double robustness is asymptotic in n for finite-dimensional
object of (@)
@ Proof strategy is roughly similar to existing tool-kit for
semi-parametric problems
e Study influence functions/von Mises expansion of finite-dimensional

object
e Show tightness of measure under causal and functional assumptions
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Set-Up and Data Model

o Observe (V;, X;, Zi)ie[n]

e Z; is an indicator of whether ); is observed

e Estimand E[Y] when ) is only partially observed

e Paper is not explicit about estimand but inferring from the structure of
their estimator

@ Assume a linear functional model V; = X,-Tﬁ + ¢; for deterministic
functions 8 = [B1,...,5,]", B; € L3([0,1],R)

e Assume a logistic model on Z, P(Z; = 1) = expit(X/ v)

o Estimate 4 as the MLE, {3 is the functional OLS estimator
B(t) = (XTX)IXTY(t)
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Estimator & Convergence

Define the estimator:

A 5 Z; A
NDR:ZX;’—B"‘ZM(yi—X;’—B)

1

Theorem 2.2. Assume that at least one of the working models (1) and (2) is correctly spec
i.e., EQVi | ) = @ B or Pr[Z; = 1|z;] = 7(x] 7). Then, the functional DR estimator v/n(fipr-
is asymptotically distributed as a Gaussian process with zero mean function. Further, if both wo

models are correctly specified, the covariance function simplifies and we have:

Valiing — pty) % GP(0,8(5) TELB(t) + E[r (] 7)]oc(s, 1))
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Proof Sketch

@ Show asymptotic normality of a finite dimensional object

o Here the proof is somewhat “brute-foced” by an M-estimation
argument

@ Show tightness of measure
o Here, the results are quite technical/measure-theoretic

o Loosely, uniform tightness is proved via Prohorov's theorem
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Tightness Lemmas

Lemma B.1. With some probability space (Q,F,P), let {Xn}n21 be a sequence of independent
random elements in Hilbert space (H,By) with mean 0 and E (HXIHQ) <oo foralli=1,...,n, and

n=n"123 " | X;. The sequence of probability measures implied by £n, {P 0 &1}, ., is uniformly
tight.

Lemma B.2. With some probability space (Q, F, P), let (Xn,Ys),>, be a sequence of paired random
elements taking values from (X, Bx) and (Y, By) respectively. Let P,, be the joint probability measures
over o (Bx x By) which is the smallest o-algebra making projections to X and Y all measurable, i.e.
Po X, (E) =Pu(E xY) VE € Bx. Assume Vy € Y, 3 o-algebra By, and P o (Xnly)™" such
that the joint probability measure can be represented by disintegration, i.e. P (E x F) = |, pPo
(Xn|y)71 (B)YdP oY, L. IfPo (Xn\y)f1 is uniformly tight, then the probability measure implied by
X, is uniformly tight. Further, if P oY, ! is also uniformly tight, then the joint probability measure

is uniformly tight.
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Notes on Liu(2024)

e Similar (global) proof structure (standard machinery to prove
convergence to Gaussian processes)

@ Explicit proofs of tightness (compared to Testa (2025)'s assumptions)
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Goals/Strategies

@ Review extensions of the “typical’ causal/doubly-robust estimation
procedure to functional outcomes
o e.g. disease trajectories, recurrent temporal data, etc.

@ Observe a seemingly common tool-kit for constructing an estimator,
performing inference
e Build a “classical” doubly-robust estimator

e (1) Finite-dimensional asymptotic normality and (2) tightness of
measure

e Approximate as a Gaussian process, construct confidence bands
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